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Collisions bet ween two solitary waves. 
Part 2. A numerical study 
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(Received 28 August 1980) 

Collisions between two solitary waves are investigated using a numerical scheme. 
The phase shifts and maximum amplitude of a collision are checked with a corres- 
ponding perturbation calculation and compared with the available experiments. We 
found a wave train trailing behind each of the emerging solitary waves from a head-on 
collision. The properties of the wave train are in agreement with those of the pertur- 
bation solution. After the collision, the solitary waves recover almost all of their 
original amplitude for the length of time in our calculation. However, the difference 
(less than 2 yo of their original valur) persists and accounts for the energy residing in 
the wave train. 

1. Introduction 
Recently Xu & M'irie (1980, hereinafter referred to as paper 1) considered head-on 

collisions of two surface solitary waves in an inviscid, incompressible, homogeneous 
fluid by a perturbation method up to the third order of approximation. They found 
that the solitary waves emerging from a collision, in addition to  having experienced 
changes of their phases, were trailed by a dispersive wave train. 

I n  this paper we shall present a numerical calculation of the collisions of two soli- 
tary waves. Our emphasis will be on the verification of the generation of the secondary 
waves as predicted in paper 1.  We shall use a set of equations derived by Su & Gardner 
(1969) for the following reasons. 

(i) These equations give the same secondary-wave system as in paper 1 up to the 
third order of approximation. This will be amplified in $ 2 ,  where the results of a 
perturbation calculation of these equations will be given. A comparison with the 
corresponding result in paper 1 will also be presented. 

(ii) These equations contain lower-order partial derivatives than the ones used in 
paper 1. The reduction of the order of derivatives facilitates the numerical scheme to 
be presented in $ 3. 

(iii) These equations have an exact solitary-wave solution. 
Since the equations derived in Xu & Gardner are obtained by discarding the fifth- 

and higher-order derivative terms of the exact equation, they have the same accuracy 
as Boussinesq's equation in shallow water. The phase shift and the maximum amplitude 
in our numerical result are correct up to that order only. 

I n  $ 2 we shall list the results of perturbation calculations of the equations derived 
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in Su & Gardner following the method in paper 1. A comparison of these results to  
those in paper 1 will also be given here. In  $ 3  we present our numerical scheme. 
The numerical results are given in $4 ,  where we study the reflection (or head-on 
collision of two identical solitary waves) of a solitary wave from a vertical wall. We 
also study the head-on collision of solitary waves of different amplitudes. The appear- 
ance of a wave train behind each emerging solitary wave, as predicted in paper 1,  is 
confirmed by these numerical experiments. 

Maxworthy (1976) has indicated the existence of a secondary wave in his experi- 
ments on the reflection of a solitary wave by a vertical wall. However, the surface 
profile he gave is too crude to make a quantitative comparison. There are also a 
number of theoretical works on perturbed solitons based mainly on the N-dV equa- 
tion. A perturbation method based on the inverse-scattering technique was given by 
Karpman (1979). A variational perturbation method was given by Bondeson, Lisak & 
Anderson (1979). Numerical integration of a perturbed K-dV equation was given by 
Fernandez et al. (1978). All of these works considered the evolution of a soliton under 
some perturbation, and all indicated the presence of a wave train. Abdulleov, Bogolub- 
sky & Makhankov (1976), andlater Bona, Pritchard & Scott (1980)integratednumeric- 
ally a variant of the K-dV equation (replacing u,,, by uXxt) and found a dispersive 
wave train after an overtaking collision of two solitary waves. 

We have carried out one calculation for an overtaking collision between two soli- 
tary waves. Our results on phase shifts and the time history of interaction agree with 
the theoretical solution of the Korteweg-de Vries equation (see the last paragraph of 
5 4). The amplitude of the wave train in this calculation is, however, of the same size 
as the numerical error. Further study is needed to  ascertain the existence of any 
dispersive wave t.rain in an overtaking collision, using an equation that is a better ap- 
proximation to the exact water-wave equation than the Korteweg-de Vries equation. 

2. The equations of motion 

bed. Using the long-wave assumption, Su & Gardner (1969) obtained 
We consider an inviscid, incompressible, homogeneous fluid layer on a horizonl a1 

h, + [hu], = 0, 

[hu], + [hU2 + *g?$ - Q?L3(UX, + uu,, - u3], = 0, 

(1) 

(2) 

where h and u are the height of the fluid surface and the average horizontal velocity 
respectively, and g is the acceleration due to gravity. Equation (1) represents the 
continuity equation, while (2) represents the momentum-conservation law. These 
equations can also be derived from the exact equations in paper 1 by discarding all 
derivatives of order five and greater. 

Two more conservation laws representing the energy and the Bernoiilli relation 
can be derived from (1) and (2),  namely 

(3) 

(4) 
Equations (1) and ( 2 ) ,  or any two out of these four equations, admit one solitary- 

[w + B P  + 3 3 4 1 ,  + p?L(Uz  + 2914 - ;1b3U(~ , ,  + uu,, - ;U31T = 0, 

[U - Qh?h,i,~,], + [iu2 + g h  - Q?~'(U,, + UU,, - ;u:) - Q ? ~ ? ~ x ~ ~ x ] x  = 0. 

1 + A  sech2- k: (x- ct +xO)], PL = c [ 1 --;I, 
2h" 

wave solution: 
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where 
C 2  k = (s)'. 

- 1 + A ,  Sho- 
A ,  c,  k stand for the wave amplitude, wave speed and wavenumber respectively; ho 
is the undisturbed depth of the fluid, and x, is a phase constant. 

Using the perturbation methods 111 paper 1, we obtain the following solution of (1) 
and ( 2 )  for the weak interaction (head-on collision) of two solitary waves (for details 
see Mirie 1980). The free-surface elevation is given by 

h = hO[l +dF+BG+BABFG+~~-ABBFG(Ak'+Ba)-~ABFG(A + B ) ] ,  (0) 

and the average horizontal velocity by 

U -- - [ A F + A 2 (  - Fz+ =&F) +A3(F3- &Pz- ik') - BG-B2( - G 2 +  4G) 
WiIP 

- B 3 ( G 3 - 4 G 2 -  iG)+#ABFG(BG-AF)+ AABFG(A --B)],  (7)  
where 

F = sech2 it, G = sech2iT, (8) 

A and B represent the wave amplitudes of the right- and left-going waves respectively. 
The phase functions I9 and $ are given as follows: 

AS 7 (c )  tends to positive (negative) infinity, the quantities in ( 1 1 )  and (12)  represent 
the phase shifts of the right- and left-going solitary waves respectively. The first 
integral in (11)  represents a simple phase shift, i.e. i t  is constant in the limit 7 -+ m; 
the second integral (which is identical with a corresponding term in equation (53) of 
paper 1 )  is the source for the production of the secondary wave train. As 'y~ --f m this 
term gives a [-dependent phase shift that  represents an asymmetrical distortion of 
the wave profile. We have demonstrated that this asymmetrical distortion evolves 
into two parts, one consisting of a uniform phase shift and the other a dispersive 
wave train as given by equation (76)  in paper 1.  The asymptotic behaviour of the 
wave train long after collision, as obtained by the method of steepest descent, was 
also given. The wave train trails behind the solitary wave that gave birth to it. It 
consists of an exponential leading edge followed by a series of oscillatory waves with 
decreasing wavelength and amplitude. For later comparison with the numerical 
results, we further simplify the expression for the mavelets (eqnation (77)  in paper 1 )  

1 6 - 2  
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under the assumption of a large separation between the solitary wave and the wave 
train. The deviation of the water surface is then given by 

where 
K2 - - 1 s  (-- 1), 6 = arccos- 2% 

O - 3  X, 1 + K i ’  

x is the horizontal distance from the centre of the solitary wave, and x, is related to 
7 by 2ehEx, = r or defined as the value of x which makes K ,  = 0. It turns out that  
x, is very close to tjhe point where the exponential and the oscillatory parts of the wave 
train meet (a point of inflection). 

We will be particularly interested in the variation of amplitude and wavelength in 
the wave train. To study the latter we consider the zeros of (13).  It is easy to verify 
that any three adjacent zeros xl, x2, x3 will satisfy the following simple relationship: 

(5, - X,)+ f (x3 - Xo)% = 2 ( X 2  - Xo)% (14) 

The positions of t  he peaks in the wave train also satisfy this relation. 

tively by 
The total (uniform) phase shifts of the right- and left-going waves are given respec- 

AO = h,($B)* ( 1  + $B + $ A ) ,  

A$ = - h,(4A)* ( 1  + $A + 2B). 

(15a)  

( l e a )  

The maximum amplitude (run-up) during the collision is obtained from (6) by setting 
F = G = 1 in hfh, - 1 )  i.e. 

maximum run-up = A + B + frAB + $(AB2 + BA2) .  (17a)  

(A@, = hO(k.LP (1 + b L +  % E d ,  (15b)  

(A$)I = - . 7 l o ( @ r l ) ~ ( 1  + $ ~ : X + $ e t ) ,  (16b) 

(maximum run-up), = eR + eL + $sIzeL + #eKeL(eR + eL) .  (17b) 

The corresponding formulas from paper 1 are 

The quantities ex and eL in (15h)-( 17b) represent the amplitude of the right- and left- 
going waves and are equivalent to  A and B in (15a)-(17a).  The differences between 
these two sets of results numbered from 15 to 17 with sub-designation a and b, 
represent the errors in the truncated equations to be used in our numerical calculation. 
We shall check the numerical results of phase shifts and maximum amplitude with 
the first set of these equations (designated with a) .  The characteristics of the wave 
train of the truncated equation are, however, exactly the same as those of the exact 
equation. 

3. The numerical method 
We now rewrite the equations of motion (1) and (4) in terms of non-dimensional 

variables defined by 
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We also group all terms involving time derivatives in (4) into a new variable. We 
obtain, after deleting the 'bar ', the following equations: 

where 

h,+ [hu], = 0, (18) 

(19) vt + [uv - $22 + h - @"3, = 0, 

1 
v = u--(h3u,),. 3h (20) 

Equations (18) and (19) serve to advance h and v in time. At each time step we 
use (20) to determine a new u. The process is then repeated for a new time step and 
this allows us to advance h and u (or v) for any finite number of time steps. The scheme 
avoids dealing with mixed derivatives in (4). The original initial-value problem in u 
is thus replaced by a simpler initial-value problem coupled with a boundary-value 
problem. 

The co-ordinates x and t are discretized by a grid spacing Ax and a time step At. 
This gives the grid points (iAx,jAt), where i and j are integers. The solutions are 
obtained step-by-step in time. First a provisional value hfj+' is obtained from (18) 
by the following finite-difference scheme : 

Then a provisional value v;j+l is obtained from (19) by 

Thirdly, a t  the new time step the horizontal velocity zi is obt,ained from (20) by using 
the provisional values of h and 21, i.e. 

Lastly, we calculate the corrected values and v{+' from (21) and (22)  by replacing 
ui by $(us +u;+l). The solution for h:j+', v;j+l, %:+I, hi+l, z(+1 involves solving a tri- 
diagonal system of equations for each variable a t  each time step. 

The use of a provisional value was introduced by Peregrine (1966). He used 5 = h - 1 
in the continuity equation and a linearized dispersion term u,,, in the Bernoulli 
equation to calculate the development of an undular bore. 

We also introduce the following tests of the numerical method. The system of 
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Reflection: Reflection: Free motion: 

Conservatinn rule steps, actual steps, actual steps, actual 
1 aw Formula initial time = 75.6 time = 165.6 time = 39.15 

Sirnpson 1512 time 2412 time 783 time 

Mass 2~0000000 2.0000000 2.0001534 2.0001215 1.9997590 
Energy 5.4379240 5.4379933 5.4376097 5.4337147 5.4372805 
Momentum 2.4494897 2,4497724 2.451 4732 2.4489286 2.4407032 
Hcrnoulli 1.81 9 760 7 1.819 9869 1.81 88769 1.81 7 0994 1+420017 4 

TABLE 1 

equations under consideration, (1)-(4), provides four constants of motion. For a 
solitary-wave motion as given in ( 6 ) ,  these four constants of motion are as follows: 

4A 
k 

(h,-  1)dz  = -, 

SD 4AC 
hudz = - 

-- w I % ’  
J:-m hvdz = (25) 

J --m J --oo 

Cis positive or negative depending on whether the wave is moving to the right or left. 
The above four constants of motion will be calculated by the Simpson rule to test 
the numerical method. 

I n  a key test we let a solitary wave of amplitude 0.5 travel thrice its effective wave- 
length in a moving grid of 800 points with Ax = 0.1,  At = 0.05. In  table 1 we give the 
results of this calculation. We found that the differences in h, u, v from the corres- 
ponding exact values as given by ( 5 )  are no more than 3.4 x 10-3 at  the end of inte- 
gration. Such results could be improved if one used a larger, stationary range of 
integration. 

The tests on the constancy of the four constants of motion will also be used on the 
numerical method for the interaction of two solitary waves. 

4. Numerical results 
(i) Rejlection of a solitary zoave from a wall 

This is the same as the head-on collision of two identical solitary waves. The solitary 
wave was stationed away from the wall such that the initial value of h - 1 a t  the wall 
was less than 0.00001. The boundary conditions a t  the wall are u = 0 ,  v = 0, h, = 0. 
At the other end of the range of integration we impose an exponential decay of h, u, v 
to their undisturbed values. We start with a solitary wave of amplitude 0.5 in a grid 
of 480 points with Ax = 0.1 and At = 0.05 as in figure 1 ,  where we have also plotted 
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FIGURE 2. Continuation of figure 1 .  The propagation after collision in the fimt 
extension for time steps 835-1512, At = 0.05. 

the profile of the image solitary wave at  different time steps. After the wave was 
reflected from the wall we twice extended the free end of the range so that the values 
of h, u, v there remained reasonably small. At time step 835 the number of grid points 
was enlarged to 960. Later, a t  time step 1512, the number of grid points was set to 
2000 and At was set to 0.1. We carried the integration till time step 2412. The motion 
of the reflected wave in the first extension is plotted for various time steps in figure 2. 
I n  the second phase we plot the last profile with the initial profile (see figure 3) .  Our 
calculations confirm the existence of n dispersive secondary-wave system. The 
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x -axis 

FIGURE 3. Comparison of surface elevation (solid line) at the time step 2412 with the initial 
solitary wave (dotted line) versus z. Actual time = 165.60; amplitude = 0.5.  

FIGURE 4. Birth of the wave train. Elevation versus .2: and t .  
The image profile is included. 

amplitude and wavelength of these wave trains a t  any fixed time decrease as the 
distance from the main wave increases. 

The reflected solitary wave in figure 3 has regained 98 yo of its original amplitude. 
The energy deficit in this reflected solitary wave is, according to (27), 2 yo of its original 
value. This deficit is made up by the amount of energy residing in the wave train. 
The numerical error in the constancy of total energy as indicated in table 1 is 0-077 % 
of the energy in the solitary wave before collision. We shall come back to  this a t  the 
end of this subsection. 
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K 3  (zero) 

0.0721 
0.2275 
0.3356 
0.4538 
0.5572 
0.6606 
0.7553 
0.8542 
0.9415 
1.0396 
1.1204 
1.2074 
1.2879 

r--- 

K 3  (zero) 

0.0318 
0.0948 
0.1 399 
0.1897 
0.2324 
0.2800 
0.3205 
0.3652 
0.4046 
0.4478 
0.4862 
0.5281 
0.5660 
0.6060 
0.6428 
0.6817 
0.7171 
0.7560 
0.791 1 
0.8283 
0,8615 
0.8997 
0.9322 

1512 time steps; actual time = 7 5 4  
Numerical 

7 PA-...--- 

Amplitude Equation (14) Equation (14) 
K 3  (peak) (Peak) K 3  (zero) K 3  (peak) 

0.1573 
0.2824 
0.3947 
0.5031 
0.6065 
0.7092 
0.8061 
0.8994 
0.9882 
1,0798 
1.1615 
1.2453 
1.3266 

0.021 3 
0.0273 
0.0260 
0.0241 
0.0221 
0.0199 
0.0178 
0.0157 
0.0138 
0.0119 
0.0103 
0.0087 
0.0073 

0.1138 
0.2039 
0.3407 
0.4464 
0.5572 
O.GBG3 
0.7574 
0.8484 
0.9469 
1.0310 
1.1235 
1.2041 
1.2887 

0.1517 
0.2760 
0.3927 
0.5006 
0.6061 
0.7063 
0.8043 
0.8972 
0.9896 
1.0749 
1.1625 
1.2441 
1.3253 

2412 time steps; actual time = 1654 
Numerical 
v ----A 

Amplitude Equation (14) Equation (14) 
K 3  (peak) (Peak) K 3  (zero) K 3  (peak) 

0.0666 0.0167 0.0474 0.0633 
0.1174 0.0174 0.0859 0.1160 
0.1655 0.0179 0.1422 0.1 643 
0.2112 0.0177 0.1862 0.2109 
0.2563 0,0176 0.2348 0.2556 
0*3000 0.0171 0.2763 0.2995 
0.3426 0.01 68 0.3226 0.3424 
0.3847 0.01 63 0.3626 0.3843 
0.4260 0.0158 0.4065 0.4261 
0.4675 0.0153 0.4454 0.4668 
0.5076 0.0147 0.4880 0.5069 
0.5463 0.0141 0.5261 0.5468 
0.5859 0.0135 0.5671 0.5856 
0.6250 0.01 29 0.6044 0.6240 
0.6622 0.0123 0.6439 0.6625 
0.7000 0.01 17 0.6800 0.6997 
0.7372 0.0112 0.7 189 0.7368 
0.7735 0.0106 0.7541 0.7730 
0.8089 0.0099 0.7921 G.8092 
0.8448 0.0095 0.8263 0.8443 
0.8797 0.0089 0.8640 0.8800 
0.9151 0.0084 0.8968 0.9146 
0.9494 0.0079 0.9578 0.9496 

TABLE 2 

Equation (1 3) 
amplitude 

(Peak) 

0.0246 
0.0249 
0.0247 
0.0243 
0.0238 
0.0234 
0.0229 
0.0224 
0.0220 
0.021 6 
0.0212 
0.0208 
0.0204 

Equation (1 3) 
amplitude 

(peak) 

0.0149 
0.0156 
0.0159 
0.0160 
0.01G1 
0.0160 
0.01 60 
0.0159 
0.0158 
0.0157 
0.0156 
0.0155 
0.0154 
0.0153 
0.0152 
0.0151 
0.0149 
0.0148 
0.0147 
0.0146 
0.0145 
0.0144 
0.0143 

We would like to point out in figure 1 the rapid falling of the water surface a t  the 
mall following its attainment of the maximum elevation there. The vertical velocity 
there reaches a value equal to half the linear wave speed (gh,)B. It seems very plausible 
that this downpour of water is the physical cause of the generation of the wave train 
as depicted in figure 4. 
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/ L’  

~ 0.60 

~ 0.40 
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FIGURE 5 .  K 3  = ( 3 ~ o ) - ~ ( ~ - z o ) ~  of extrema arid zeros of wavc train at time stf’ps 1512, 2412 
(0, x ; 0, A) versiis the number. Thc dashcd lirrcs arc tlwir rcspcctivc lmst-scpnrc approxi- 
mation by a straight line. 

The decrease in the wavelength and amplitude in the wave train is clearly 
perceptible in figures 1 and 2. In  table 2 we verify the wavelength variation as 
given by (14) for the time steps 1512 and 241 2. Also given are the calculated positions 
of the extrema in the wave train and those given by (14).  In  figure 5, the value of 
Kg = (x/3xO- I)$ a t  the extrema and zeros for time steps 1512 and 2412 is plotted 
versus the number of the extremum or zero, respectively. Also included is thc linear 
least-square approximation of each. 

The absolute values of the maxima and minima of the wave train a t  two time steps 
(1512,2412) are plotted in figure 6. This shows the decrease in amplitude and dispersion 
of the wave train in time. I n  table 2, we list these values in the third column in order 
of increasing distance from the main wave. The corresponding values from the theo- 
retical result as given by (13) are listed in the last column. Comparison of these two 
columns (third and sixth) shows that the agreement is good for those wavelets not 
too far from the main wave. The numerical calculation gives faster decay of the wave 
train as a function of distance from the main wave than that predicted bj7 the per- 
turbation analysis. 

Four more cases of solitary waves of amplitude 0.31,0.2;  0.1 and 0.05 with Ax = 0.1, 
At = 0.05 and grid length of 480 points were integrated. The phase shifts for each case 
are plotted in figure 7, along with the first-order solutions of Byatt-Smith (1971), 
Oikawa & Yajima (1973), and (15a, b ) .  We have also plotted the experimental results 
of Maxworthy (1976). To the accuracy of our calculations the phase shift is amplitude 
dependent and lies G-17 yo above the Corresponding theoretical predictions. This is 
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0 
U 

0 
0 

0.10 ,,, 
I I I ! I 

0 3 6 9 12 15 18 21 24 27 30 

FIGURE 6. Amplitude of extrema of wave train a t  time steps 1512 (A), 
2412 (n) versus extrerria number. 

t I 40 
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3 2 . 0 5 ~  
30.10-'31.89 33.68 35.41 31.26 39.05 40.84 42.63 4442 46.21 48 
t 

I 10.72 

32.05 
0 

26.72 

2 1.38 

16.05 '2 
i= 
B 

10.72 

5.38 

0.05 
D 

x-axis 
VIGURE 8. A typical example (ampliturlo = 0.31) of phase shift evaluation. --, position of 
the higliest lovol of water versus time; . . . , trajectory of a non-interacting solitary wave. 
Amplitude = 0.31. 

- x 

Amplitude 

FIGURE 9. Maximum run-up (hlh,) ( P  = 1 ,  G = 1 )  - 1 versus amplitude Ah/& = A .  -. -, 
first-order; . . .. second-order; - .  -, (17a);  - , (17b); *, numerical; x , Chan & Street 
(1971) numerical; 4, Camfield & Street ( 1969) experimental; A, Maxworthy's (1978) end-wall 
reflection; 0, waw-wave interaction. 



Collisions between two solitary waves. Part 2 

- 100.60 

- 100.50 

487 

x-axis 
FIGURE 10. Comparison of 0.1 amplitude reflected solitary wave. Elevation (--) and initial 

profile ( .  . . .) versus u at time step = 3740. Actual time = 34.451 ; amplitude = 0.1. 

because of the slightly smaller amplitude and thus smaller wave speeds of the reflected 
waves. A typical phase-shift calculation is given in figure 8 for the case of the amplitude 
equal to 0.31. The trajectory of the point of maximum amplitude of the solitary wave 
is plotted. The intercept on the time axis can be calculated by using (6) .  We obtained 
a value of 2.85(h0/g)$ by taking the first four terms while the numerical value is 
2.88 (h,/g)*, 

The maximum run-up calculations are plotted in figure 9, along with the results 
of Camfield & Street (1969), Chan & Street (1971), Byatt-Smith (1971), Oikawa & 
Yajima (1973), Maxworthy (1976), and (17a, b)  for A = B. We have excellent agree- 
ment for amplitudes up to  0.30. 

To test the existence of the wave train for small amplitudes we have reconsidered 
the case with amplitude 0.1, with Ax = At = 0.01, in different stages. Because for 
small amplitudes the solitary wave has a large extension, the x and t variables were 
redimensionalized by the wavenumber. This introduced minor changes in the finite- 
difference equations and boundary conditions where derivatives were involved. We 
started with a grid of 2000 points till the maximum run-up occurred. Then the grid 
was enlarged to 3000 points, and later to  4000 points. We carried the integration till 
the time step 3740. The surface elevation of the last time step is plotted in comparison 
with the initial profile in figure 10. The discrepancies in the conservation laws of mass, 
energy, Bernoulli and momentum are no more than 2 x 1.3 x lop5 and 
1.3 x 10-5 respectively, for all of the time of integration. As is evident from figure 10, 
the wave train has not completely separated from the main wave. The amplitude of 
the reflected wave up to the time step 3446 reached 99.8 yo of its initial value. The 
energy deficit calculated from (27) is 0.1 yo of the original value. As in the case that 

3.6 x 
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0.56 

0.48 

0.40 

v) 0.32 

7J 
.- 
.L: 

0.24 

0.16 

0.08 

0 

FIGURE 11. Weak interaction of 0.5 and 0.25 amplitude solitary waves. 
Elevation versus II: and t .  

8.00 16: 

Amplitude = 0.25 

x-axis 
FIGURE 12. Comparison with initial profile of the last profile in figure 11 versus II:. 

Actual time = 29.9. 

3.56 

D.48 

0.40 

0.32 

4 
7J 

0.24 -c 

0.16 

0.08 

0 
1 

we discussed earlier (for collision of two waves with amplitude 0-5), this deficit is 
much bigger than the error in the constancy of the energy of our numerical calculation. 
I n  both cases, we are certain that the wavelets, a t  least those in the leading part of 
the wave train, are not numerical noise. We also note that the difference in amplitude 
between the reflected and the original wave is much less than the cube of the original 
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FIGURE 13. Strong interaction of 0.6 and 0.2 amplitude solitary waves. 
Elevation versus 5 ( =  r - t ) ,  1 time steps 9-1541. 

amplitude, a discrepancy which is beyond the third order of approximation in the 
perturbation calculation presented in paper 1. Our results indicate that the recovery 
of a solitary wave in a head-on collision is not 100 %. The discrepancy is amplitude- 
dependent: 99-8 yo for waves of amplitude of 0.1 and 98 yo for waves of amplitude of 0.5. 

(ii) Wave-wave weak interaction 

We consider the collision of two solitary waves with different amplitudes. The initial 
condition is given by a linear sum of two well-separated solitary waves of amplitudes 
0.5 and 0.25. The waves were set on a head-on collision course. We used exponential- 
decay boundary conditions on both ends of the range of integration. The grid size was 
Ax = 0.1, At = 0.1 and the range consisted of 2000 grid points. We integrated up to 
300 time steps. Details of the profile are given in figure 11. The maximum amplitude 
of the wave trains trailing behind each solitary wave depend on the amplitudes of 
the solitary waves. I n  figure 12 we compare the numerical result after the collision 
with the linear sum of exact solitary waves, and notice a slight discrepancy in ampli- 
tude. The maximum run-up calculated is (0.8199) while ( 1 7 4  gives (0.8359). Consider- 
ing that the next-order term in (17a) is of order of magnitude A2B2 = 0.0156, the 
accuracy we have is excellent. 
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FIGURE 14. Same as figure 13. Tim0 steps 15GO-2550. 

(iii) Wave-wave strong interaction 

We consider the overtaking collision of two solitary waves of amplitudes 0.6, 0.2. The 
initial conditions are given by a linear sum of two well-separated solitary waves. The 
waves are set to move in one direction in a moving grid of unit speed consisting of 800 
points with Ax = At = 0.1. In this moving grid the integration is carried till the time 
step 1550. In  figure 13 we plot the surface elevation versus x and t from t = 0 up to 
this time step. ?Ve accentuated the wave profiles at three different instants of time 
to  elucidate the time evolution of the interaction. As the big wave is overtaking the 
smaller one, the latter increases and the former decreases in amplitude until the two 
become equal. This state is shown by the middle profile (solid line), which is nearly 
symmetric with a minimum centred between two equal maxima. However, before this 
happened, the maximum height of the small wave disappeared once under the big 
wave, as evidenced from the dotted profile. The disappearance of the peak of the 
small wave recurred once again after the big wave re-emerged (now on the right side 
of the small wave) from the state of symmetry. This is indicated by the dashes. 

The time history of the collision described above fits in with case ( b )  of a theory 
expounded by Lax (1968) using the K-dV equation. The speed ratio in the present 
case is 3, which puts our case between cases ( b )  and ( c )  of Lax.? 

The grid was enlarged from 800 to  1100 points after time step 1150. Figure 14 
shows the profiles up to time step 2250. From figures 13 and 14, it is easily seen that 
the big wave is shifted forward while the small wave is shifted backward owing to 
collision. The numerical values for these shifts are: big wave 2.3, small wave 3.6. 

t This brhaviour was observed exporimentally by Weidninn K .  Maxworthy (1  978). 
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FIGURE 16. Comparison of the last profile in figure 14 (solid line) 
and the initial data (dotted line). 
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FIGURE 16. Errlargemetit of figure 15. Actual time = 355.00. 
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The corresponding theoret'ical values based on t,he K-dV equation are 1.96 and 3-4, 
as given by Hirota (1971), Gardner et al. (1974) and Whitham (1974). The small 
discrepancies are probably due to  some higher-order effects contained in the equation 
that we used. 

I n  figure 15 we compare the wave profile at time step 2250 with the initial solitary 
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waves. The amplitudes of both waves hare recovered 99 yo of their initial values. 
However, the wavy structure trailing behind the smaller wave after collision, as 
amplified in figure 16, is of much smaller amplitude than that in a head-on collision 
(compare figures 16 and 12). The amplitude of the oscillations in figure 1 G  is of the 
same size as the error in the constants of motion. The somewhat irregular oscillations 
in this case could very well be due to  the numerical error. Further investigation with 
finer grids is needed to ascertain the existence of a wave train in the case of overtaking 
collisions. 
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